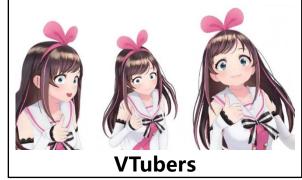
Data Infrastructure for Scaling up Human Pose and Shape Estimation to the Real World

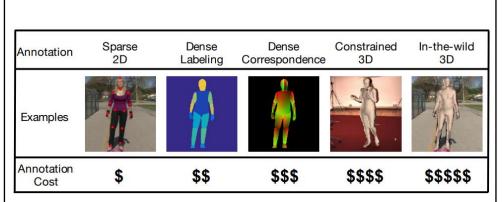
Zhongang Cai 蔡中昂

Ph.D. Student S-Lab, Nanyang Technological University

12 Jan 2023

Background

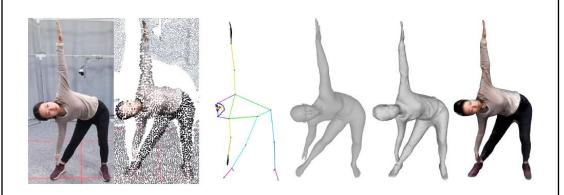




3D Human Data Is Expensive to Acquire [1]

[1] Y. Rong et al., Delving deep into hybrid annotations for 3d human recovery in the wild, ICCV 2019

Solution



Playing for 3D Human Recovery

Large-scale Generation of Synthetic Data

HuMMan: Multi-Modal 4D Human Dataset for Versatile Sensing and Modeling

Large-scale Collection of Real Data

Playing for 3D Human Recovery

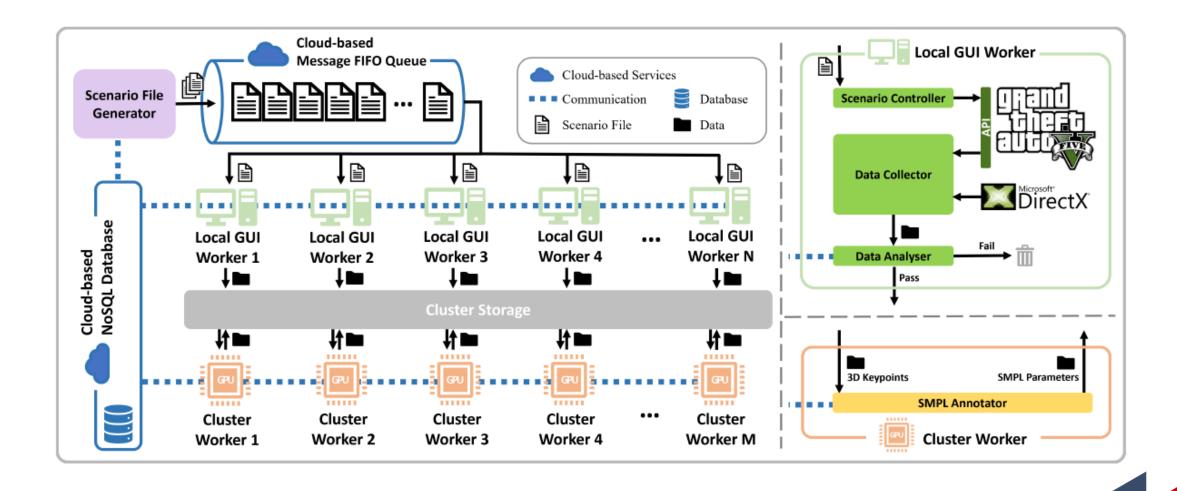
Zhongang Cai*, Mingyuan Zhang*, Jiawei Ren*, Chen Wei, Daxuan Ren, Zhengyu Lin, Zhao Haiyu, Lei Yang, Chen Change Loy, Ziwei Liu

S-Lab, Nanyang Technological University,
SenseTime Research

Playing for 3D Human Recovery

TABLE 1: 3D human dataset comparisons. We compare GTA-Human with existing real datasets with SMPL annotations and synthetic datasets with highly realistic setups. GTA-Human has competitive scale and diversity. Datasets are divided into three types: real, synthetic and mixed. GTA-Human samples character action sequences from a large in-game database that allows a unique action to be assigned to each video sequence. Note that EFT [20] re-annotates 2D human pose estimation datasets where the number of subjects are difficult to trace. *: 3DPW and Panoptic Studio only have general descriptions of scene activities

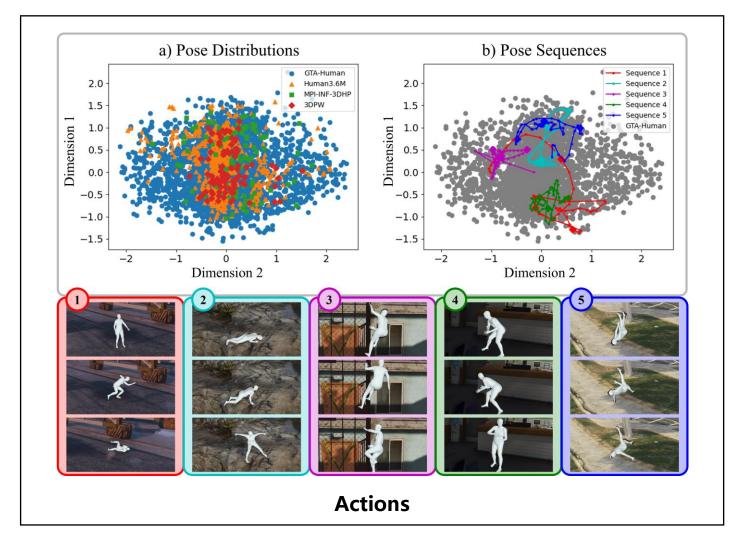
Dataset	Year	Туре	In-the-Wild	Video	#SMPL	#Sequence	#Subject	#Action
HumanEva [5]	2009	Real	-	√	NA	7	4	6
Human3.6M [8]	2013	Real	-	\checkmark	312K	839	11	15
MPI-INF-3DHP [21]	2017	Mixed	\checkmark	\checkmark	96K	16	8	8
3DPW [6]	2018	Real	\checkmark	\checkmark	32K	60	18	*
Panoptic Studio [9]	2019	Real	-	\checkmark	736K	480	~ 100	*
EFT [20]	2020	Real	\checkmark	-	129K	NA	Many	NA
SMPLy [7]	2020	Real	✓	\checkmark	24K	567	742	NA
AGORA [22]	2021	Synthetic	\checkmark	-	173K	NA	>350	NA
GTA-Human	2022	Synthetic	\checkmark	\checkmark	1.4M	20K	>600	20K

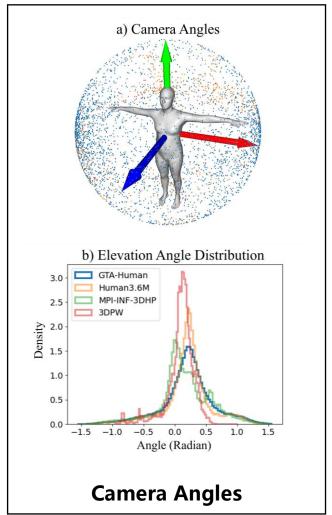


Toolchain & Data



Data Diversity




Subjects, Locations, Weathers, and Light Conditions

Data Diversity

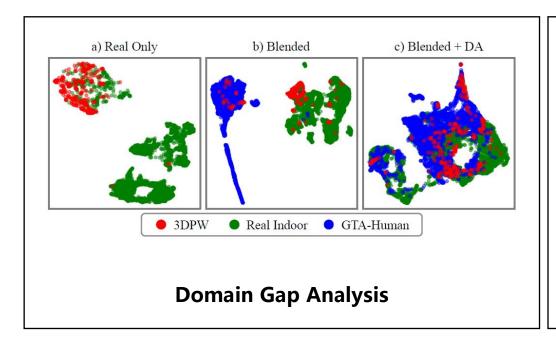
Experiments

TABLE 2: GTA-Human's impact on model performance. The values are reported on 3DPW test set in mm. We employ two strategies: blended training (BT) that directly mixes GTA-Human data with real data to train an HMR model; finetuing (FT) that finetunes pretrained models with mixed data. Significant performance improvements are achieved with both settings. Including GTA-Human in the training boosts the HMR [23] baseline to outperform much more sophisticated methods such as SPIN [24] that leverages in-the-loop optimization (Registration) and VIBE [25] that utilizes temporal information (Video); State-of-the-art method PARE [26] also benefit from data mixture. We also conduct further experiments on video-based human recovery with VIBE in Table 3. Mixture: data mixture strategies. Real: real datasets.

Method	Mixture	Registration	Video	Pretrain	Train	Finetune	MPJPE↓	PA-MPJPE↓
HMR	-	-	-	ImageNet	Real	-	112.3	67.5
HMR+	-	-	-	ImageNet	Real	-	98.5	61.7
SPIN	-	✓	-	ImageNet	Real	-	96.9	59.2
VIBE	-	-	\checkmark	ImageNet	Real	-	93.5	56.5
PARE	-	-	-	ImageNet	Real	-	82.0	50.9
HMR	BT	-	-	ImageNet	Mixed	-	98.7 (-13.6)	60.5 (-7.0)
HMR	FT	-	-	HMŘ	-	Mixed	91.4 (-20.9)	55.7 (-11.8)
HMR+	BT	-	-	ImageNet	Mixed	-	88.7 (-9.8)	56.0 (-5.7)
HMR+	FT	-	-	HMŘ+	-	Mixed	91.3 (-7.2)	55.5 (-6.2)
SPIN	FT	-	-	SPIN	-	Mixed	83.2 (-13.7)	52.0 (-7.2)
PARE	FT	-	-	PARE	-	Mixed	77.5 (-4.5)	46.8 (-4.1)

TABLE 3: Video-based 3D human recovery. The values are reported on 3DPW [6] test set with VIBE as the base model. MI3: MPI-INF-3DHP. GTA: GTA-Human. PA: PA-MPJPE. Accel: acceleration error (mm/s^2) . *: downsampled GTA-Human data to match the size of MPI-INF-3DHP (96K SMPL poses).

MI3	3DPW	GTA-Human	MPJPE↓	PA ↓	Accel ↓
√	-	-	95.0	56.5	27.1
-	-	√ *	93.7	55.0	26.3
-	\checkmark	-	87.9	54.7	23.2
-	-	✓	91.3	54.1	24.7
-	\checkmark	✓	85.2	52.4	24.2
\checkmark	\checkmark	✓	86.0	51.9	23.3

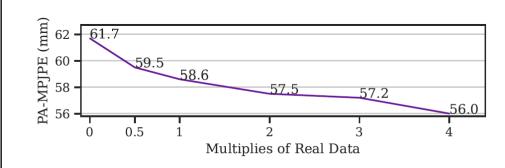

Adding synthetic data is effective

- Image-based: 4~10 mm PA-MPJPE improvements
- Video-based: almost on-par with real data

Experiments

TABLE 6: Domain adaptation with equal amount real and synthetic data. PA: PA-MPJPE.

Method	Real	GTA-Human	PA-MPJPE↓
HMR	√	-	76.7
$HMR(1\times)$	-	\checkmark	65.7
$HMR (BT, 1 \times)$	√	√	58.6
CycleGAN [68]	√	✓	61.6
Chen <i>et al</i> . [70]	\checkmark	\checkmark	57.9
JAN [69]	\checkmark	\checkmark	56.5
Ganin <i>et al</i> . [71]	\checkmark	\checkmark	55.5


Domain Adaption

Experiments

Fig. 8: Amount of GTA-Human Data. The horizontal axis indicate the amount of GTA-Human data used as multiples of the amount of real data. HMR+ is used as the base method.

Data Scale Matters!

TABLE 7: Synthetic Data as a Supplement. Different total data amount with different real data ratio are shown. Values are PA-MPJPE (mm) on 3DPW test set. Synthetic data are sampled from 4× set during training. N/A: this ratio cannot be sustained beyond 300K data due to insufficient real data. HMR+ (BT) is used as the base method.

Real Ratio	100K	200K	300K	400K	500K
0%	70.6	64.5	65.7	65.0	64.9
25%	62.4	60.9	58.0	57.6	57.3
50%	61.7	58.9	57.9	56.3	55.6
75%	62.4	58.4	56.8	55.7	N/A
100%	65.8	62.7	61.7	N/A	N/A

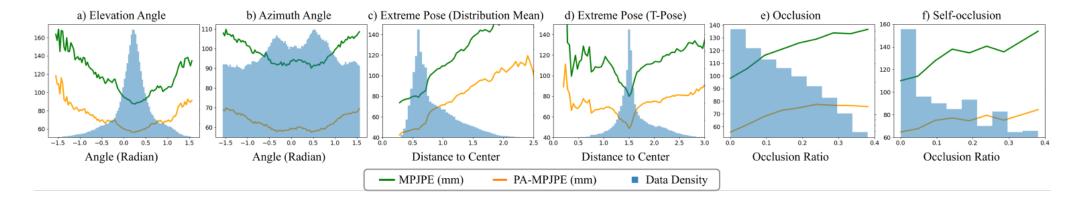

Supplementing Synthetic Data to Real Data

Fig. 9: Impact of data scarcity. We show that model performance is sensitive to data scarcity, and this observation is consistent on factors such as camera angles, poses, and occlusion. For c) and d), we follow [74] to encode pose as a set of 3D coordinates of the 24 key joints, and plot the distance from the mean pose and T-pose respectively. The data density of e) and f) are in log scale.

Impact of Data Scarcity: Severe Performance Degradation where Data is Scarce

TABLE 8: Strong supervision is key. The first row is the HMR+ baseline without any GTA-Human data added.

Keypoints	SMPL	MPJPE↓	PA-MPJPE↓
-	-	98.5	61.7
\checkmark	-	93.4	60.9
-	\checkmark	92.0	56.3
√	✓	88.7	56.0

Strong Supervision is Key

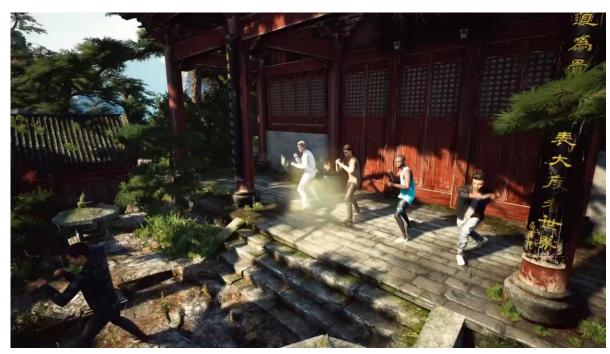
TABLE 9: Big data benefits big models. Real: training with only the real datasets. +GTA: blended training setting is used with GTA-Human. Values in green indicate the error reduction in PA-MPJPE (mm) with blended training.

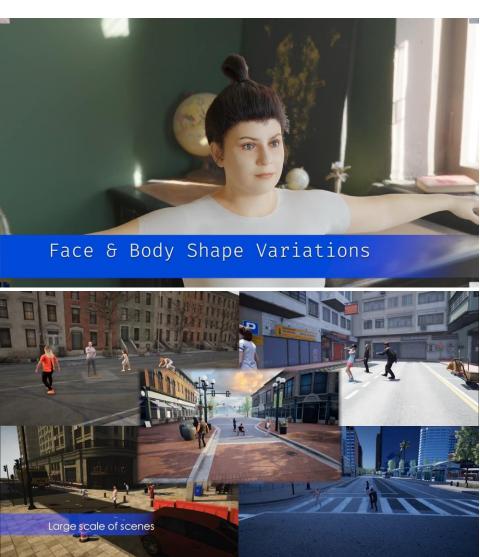
Backbone	#Param	Real↓	+GTA-Human↓
ResNet-50	26M	61.7	56.0 (-5.7)
ResNet-101	45M	60.1	54.5 (-5.6)
ResNet-152	60M	58.4	54.3 (-4.1)
DeiT-Small	22M	66.5	60.7 (-5.8)
DeiT-Base	86M	61.2	56.2 (-5.0)

Big Data Benefits Big Models

What's Next?

GTA-Human++





That's all for GTA-Human

GTA-Human (Homepage)

MMHuman3D (Perception Toolbox)

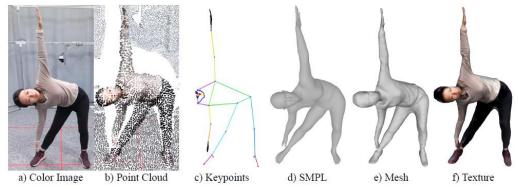
XRMocap (Toolchain)

HuMMan: Multi-Modal 4D Human Dataset for Versatile Sensing and Modeling

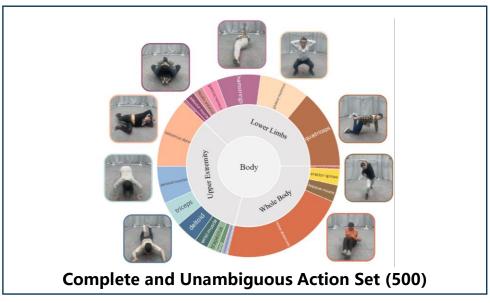
Zhongang Cai*, Daxuan Ren*, Ailing Zeng*, Zhengyu Lin*, Tao Yu*, Wenjia Wang*, Xiangyu Fan, Yang Gao, Yifan Yu, Liang Pan, Fangzhou Hong, Mingyuan Zhang, Chen Change Loy, Lei Yang, Ziwei Liu

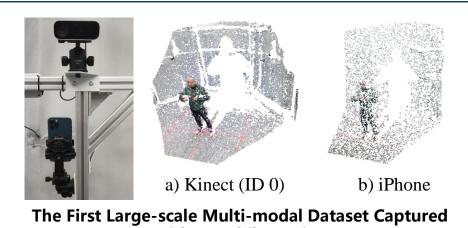
Shanghai AI Laboratory, S-Lab, Nanyang Technological University, SenseTime Research, The Chinese University of Hong Kong, Tsinghua University

ECCV'22 Oral



Overview

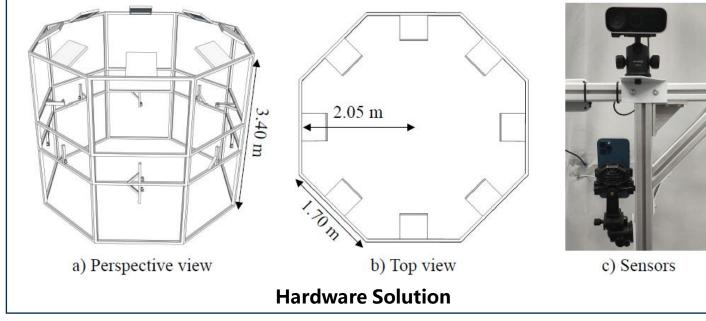


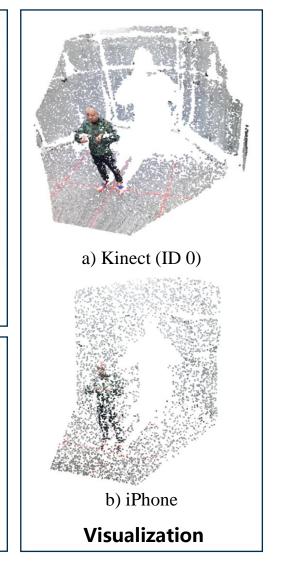


Dataset	#Subi	#Act	#Sea	#Frame	Video	Mobile				Mod	lalitie	es.		
	// Casj	,,	#Beq	#11ame				GB D/PC Act K2D K3D Para		Param	Mesh	Txt		
UCF101 [85]	-	101	13k	-	√	-	√	-	√	_	_	-	_	_
AVA [20]	-	80	437	-	✓	-	\checkmark	-	\checkmark	-	-	-	-	-
FineGym [82]	-	530	32k	-	✓	-	✓	-	✓	-	-	-	-	-
HAA500 [14]	-	500	10k	591k	✓	-	✓	-	✓	-	-	-	-	-
SYSU 3DHOI [26]	40	12	480	-	✓	-	✓	\checkmark	✓	-	✓	-	-	-
NTU RGB+D [81]	40	60	56k	-	✓	-	✓	✓	\checkmark	-	\checkmark	-	-	-
NTU RGB+D 120 [54]	106	120	114k	-	✓	-	✓	✓	✓	-	✓	-	-	-
NTU RGB+D X [91]	106	120	113k	-	✓	-	✓	\checkmark	\checkmark	-	\checkmark	✓	-	-
MPII [3]	-	410	-	24k	-	-	✓	-	✓	✓	_	-	-	_
COCO [52]	-	-	-	104k	-	-	✓	-	-	✓	_	-	-	-
PoseTrack [2]	-	-	> 1.35 k	>46k	✓	-	✓	-	-	✓	_	-	-	-
Human3.6M [28]	11	17	839	3.6M	✓	-	✓	✓	\checkmark	✓	\checkmark	-	-	-
CMU Panoptic [34]	8	5	65	154M	✓	-	✓	✓	-	✓	✓	-	-	-
MPI-INF-3DHP [63]	8	8	16	1.3M	✓	-	✓	-	-	✓	✓	-	-	-
3DPW [61]	7	-	60	51k	\checkmark	✓	✓	-	-	-	-	✓	-	-
AMASS [60]	344	-	>11k	>16.88M	✓	-	-	-	-	-	\checkmark	✓	-	-
AIST++[48]	30	-	1.40k	10.1M	\checkmark	-	\checkmark	-	-	\checkmark	\checkmark	✓	-	-
CAPE [59]	15	-	>600	>140k	√	-	_	-	√	_	√	√	√	_
BUFF [105]	6	3	> 30	> 13.6 k	✓	_	✓	✓	✓	_	✓	✓	✓	✓
DFAUST [6]	10	> 10	> 100	>40 k	✓	_	\checkmark	✓	✓	✓	✓	✓	✓	✓
HUMBI [101]	772	-	-	$\sim 26 \mathrm{M}$	✓	_	\checkmark	-	-	✓	✓	✓	✓	✓
ZJU LightStage [76]	6	6	9	>1k	✓	-	\checkmark	-	\checkmark	✓	\checkmark	✓	✓	✓
THuman2.0 [99]	200	-	-	>500	-	-	-	-	-	-	-	✓	\checkmark	\checkmark
HuMMan (ours)	1000	500	400k	60M	√	√	√	√	√	√	√	√	√	√

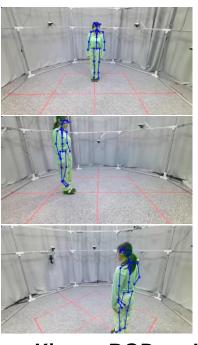
The Largest-scale Multi-modal Dataset for Human Sensing and Modeling

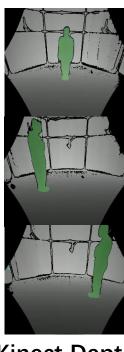
with a Mobile Device

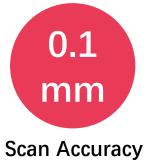

Hardware


Hardware

Data Collection





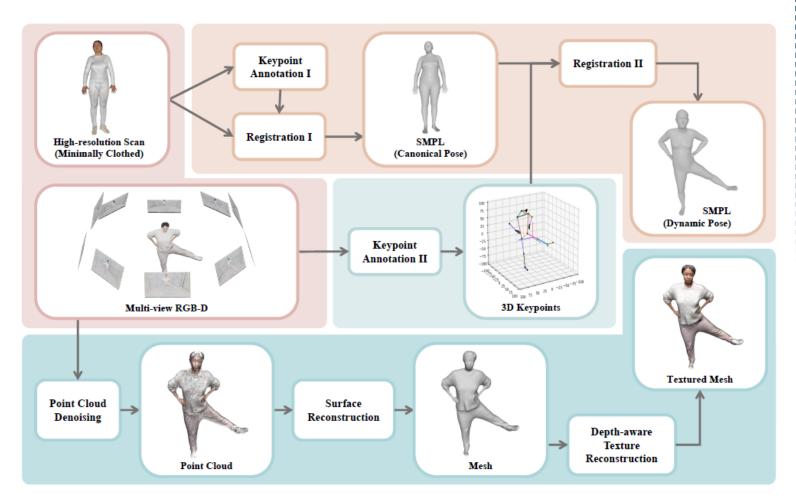

Artec Eva

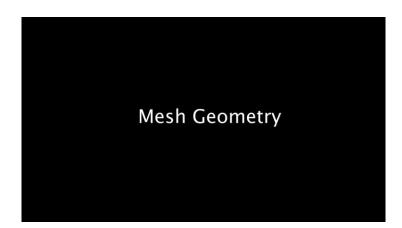
iPhone RGB

iPhone Depth

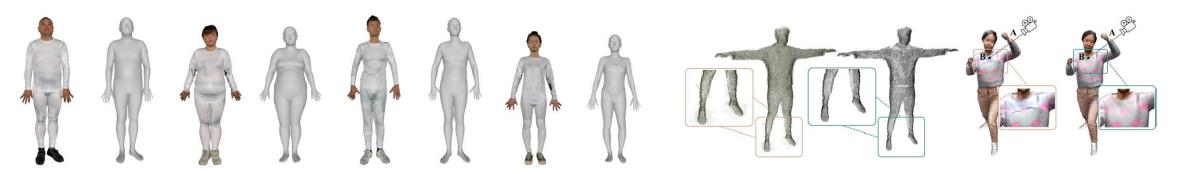
Kinect RGB

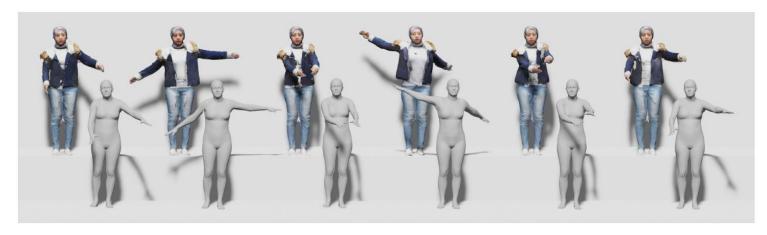
Kinect Depth


Data / second



Toolchain



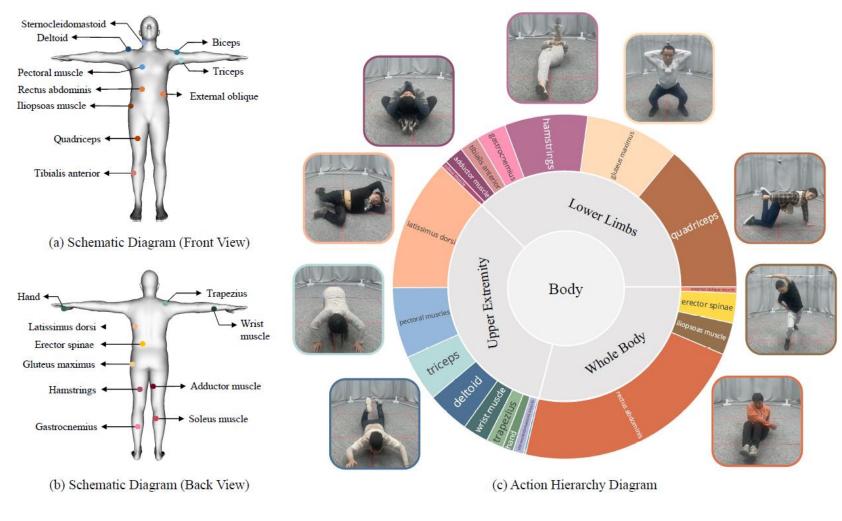


Shape Registration

Point Cloud Denoising

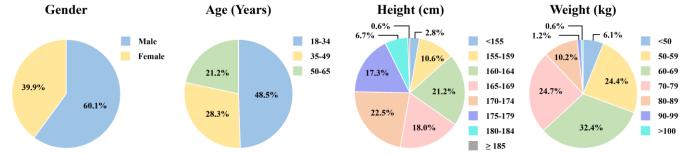
Depth-Aware Texture Reconstruction

Parametric Model and Textured Mesh Sequences


Action Set

Action Set

Subjects



Varieties in Genders, Ages, Body Shapes (Heights, Weights), Ethnicity, and Clothing

Updates on HuMMan v1.0

Reconstruction Subset (Just Released!)

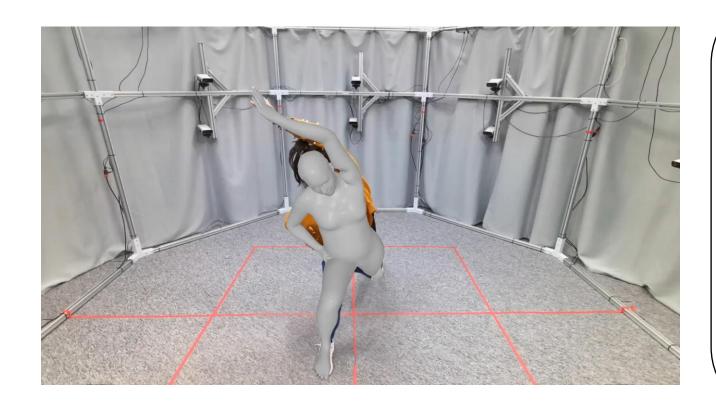
153 Subjects

339 Sequences

Realistic Challenges

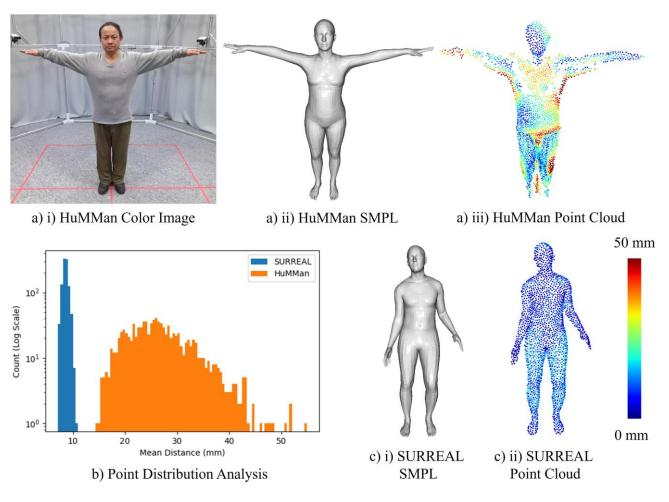
Methods	Novel Pose	Novel View			
NHP [1]	<18	<18			
MPS-NeRF [2]	<18	<18			
? [?]	~20	~20			

Generalizable Animatable Avatar from Single Image (Metric: PSNR)


^[1] NHP Neural Human Performer: Learning Generalizable Radiance Fields for Human Performance Rendering

^[2] MPS-NeRF: Generalizable 3D Human Rendering from Multiview Images

Action Understanding Subset (Coming Soon!)


Lunge Twist Stretch L (ID=11):

Put your **right leg** in the front and your **left leg** behind. Bend your **right knee** about 90 degrees while keep your **left knee** straight with **left toes** on the ground. Keep your **body** in the upright position and tilt to your right. Straighten your **left arm** and keep it close to your **left ear**. Put your **right hand** on the right side of the **waist**, with **right elbow** bent at 90 degrees.

Perception Subset (Coming Soon!)

Point Cloud-Based Human Pose and Shape Estimation

What's Next?

RenBody (Full Set Coming Soon!)

Thank you!

HuMMan (Homepage)

GTA-Human (Homepage)

MMHuman3D (Perception Toolbox)

XRMocap (Toolchain)